
 

 

  

Excel-lentsolutions.co.uk 
 

 

Do's and Don'ts of Macro 
Programming in Excel 
A Methodical Approach 

by Farzad Afkham 

 



When I meet clients in Excel, usually they fall into two categories: 
                
 

 

 
 

 

While this article is dedicated to category 1's, it is actually very beneficial (further down - 
section 9) to the category 2's. 

 

 

 
 

Well, let's start with the basics. 

  I'll go over the reasons a little further on. 

 
                

 

1) Those who have done 
some programming 

 2) Those who would 
never do it. 

So what can I tell you about programming 
in Excel that you don't already know. 

1) Never run a macro on your only copy. 



 

 

 

 

 
                

 

 
                

 

 

 4) If you're more of an Excel super-user than a programmer and you've learned to write 
macros by using the macro-recorder, big kudos to you, but there are a few limitations you 
should be aware of. Read the limitations of this approach below. 

 

 
 

 

 

 

 
                

 2) Always save your work PRIOR 
to running a macro.  
 

3) If you've never taken a course in 
programming, I recommend brushing 
up on some basics. It will come in 
massively useful when your code 
doesn't work and you want to find out 
why. 

• Difference between a 
subroutine and a 
function is.... 

5) The loop that never ends. 



 

               ? 
 

 

 

 

             

   
       

 

 6) When Excel has become corrupted. 

 7) Mac Macros - for those programming for Excel on the Macintosh. 

 8) When it takes longer to program than to do it manually. 

9) Farming out your automation requirements and what to expect. 
 



 

 

 
  

     

 

 

 

 

 

ONE 

 

 
 

 

 

 

10) Cheaper versus Better. 

Never run a macro on your only copy.  

Macros have been known to corrupt a file. So it is 
always worth backing up a file on which you're 
planning on working prior to creating a macro or 
running vba scripts (aka macros), preferably on a 
removable drive, eg. a flash drive/memory stick. That 
way should anything go wrong, you'll be able to open 
your file again, maybe even on another computer. 

Would you like to discuss your 
excel requirements? 

http://www.excel-lentsolutions.com/free_consultation.html


TWO 

 

 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Always save your work PRIOR to running a macro.  

 
Macros cannot be undone. With Excel, usually you have a get 
out of jail free card if something goes wrong. For instance if 
you over-type a data cell. You can always go to the Edit menu 
and click the undo button or Press the Ctrl button on your 
keyboard and while holding it down, press "Z" key.  This will 
restore your last edit to how it was priorly. If you keep 
undoing, it will keep going back.  
 
No such luck with the Macro you just ran. If you expected the 
Macro to have done one thing, and you got something else, 
you're stuck with it. THE ONLY WAY AROUND this is to 
close down the file WITHOUT saving it. Re-opening it will 
hopefully get you back to the file prior to the macro being run.  
 
Why do I say hopefully? Because if in your macro you've 
written in a SAVE command, then it has already saved your 
workbook and there's no return. This should hopefully high-
light point 1: running a macro on your only copy should 
NEVER be done! 



THREE 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

If you've never taken a course in programming, I 

recommend brushing up on some basics. It will come in 
massively useful when your code doesn't work and you 
want to find out why.  

Whether you consider yourself a programmer or not, as 
you delve into the world of the macro recorder and begin 
to look at the code that the Excel Application has written 
for you, you'll soon start wondering what happens if you 
begin to edit the code. And before you know it, you're 
programming.  

However the best way to write a program isn't through the 
recorder. That's just the beginning of your journey. And 
while it may save you time today because it does exactly 
what you need it to do, there will come a time tomorrow 
where you data starts at a different point, it ends at a 
different point, there are more rows to your new data and 
more columns, there are different data now in the columns 
than expected. This is because perhaps you've inserted a 
column or you've added a subtotal row. Do you really 
want to go into the code and change it 'every time'?  

Code that is well-written will look at your data every time. 
It will determine what information is in which columns, it 
determines how far down the rows it should look. It's 
intelligent. You write the code just the once and it serves 
you every time.  

So if you're serious about saving yourself time and errors, 
get yourself on a programming course of some kind. 
Better that, than wonder why your data has gone awry. 
And if this has been happening for months, you might 
have bigger problems than you initially thought  as 
essentially the original data may have been over-written. 
The major advantage of improving your understanding of 
programming comes when your macro doesn't produce the 
expected results and you want to a)Learn why, and b), and 
more importantly rectify it. 

      
  

Would you like to discuss your 
excel requirements? 

http://www.excel-lentsolutions.com/free_consultation.html


FOUR 

 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

If you're more of an Excel super-user than 

a programmer and you've learned to write 
macros by using the macro-recorder, big 
kudos to you, but there are a few limitations 
you should be aware of. 
 
 Apart from what has been said above, another 
advantage of well-written code is speed of 
execution. If you need to run the macro and get 
the results, reports, etc. right away, do you really 
want to wait minutes each time for it? A well-
written macro usually delivers your information 
in seconds!  
 
Programmers take advantage of something called 
a loop, that enables a process to be iterated as 
many times as is necessary in order to complete 
the job. Now the Macro recorder does not do that. 
Essentially if you've used the recorder, it has 
written the code again and again and again.  And 
so what looks like 30 pages of recorded code, 
could have been only 6-8 lines neatly placed in 
one or two appropriate loops.  



FIVE 

 

 

       Jill's name was only recently removed!   
  

 

 

 

 

 

 

 

 

 

 

 

 

 

The loop that never ends.  

If you're already using loops in your macros beware 
of the loop that you thought would end at a certain 
point, but then it doesn't because you didn't take 
something into account and it goes on and on 
forever.   
 
Use the ESC key or the Fn + Break key on your 
keyboard to put a stop to it. Here's an example of a 
loop that never ends: 

 
                Look through the data and stop looking 
when you see the name Jill! 

 
But Jill has left the company and her name no longer 
appears in the list! Whoops. The computer will keep 
looking! 

Jill left the 
Company 
6 years 
ago! 



SIX 

 

 

   Be sure and check the  'Create a copy' box! 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

When your Excel file has become corrupted.  

This doesn't happen very often, but sometimes your file, 
for whatever reason becomes corrupt and nothing works 
as expected. At times like these calculations go awry. 
I've encountered 2+2 = 6. That's the time to throw in the 
towel and realise, you're not going to get plausible 
results or a recurring experience, which as a 
programmer you count on. So here's the first thing I 
recommend: 

                a) Save as [Another name] and close Excel. 
Then reopen and see if that has fixed it.  

If not 

                b) Copy and paste all the VBA modules into a 
word document and recreate the data files by copying 
the sheets into a brand new workbook and then adding 
the VBA code into brand new modules. Save and see if 
that has fixed the problem. 

If not 

                c) Copy the data from each tab from the Excel 
workbook, then copy and paste the VBA code from the 
aforementioned word document. This should hopefully 
fix the problem.  



SEVEN 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Mac Macros - for those programming for 

Excel on the Macintosh.   
I've successfully created Macros for Mac user clients, 
but there are a few points worth bearing in mind when 
creating macros for the Macintosh. Certain commands 
will not work. So if the macro was initially written for 
the PC, it is high advisable to test the macro in the 
same environment on the MAC.  
 
This not only means the particular MAC architecture, 
but also the version of Excel being used. Certain 
menus or buttons or active x controls may not work on 
the MAC. Windows API commands more than likely 
will not work on the MAC. So if your macro allows 
you to browse for a file on your PC computer, the 
chances are the browsing function won't work on the 
MAC and will cause it to crash.  
 
Dates work differently on the MAC. Excel is a 
windows-based application, so the user experience will 
always be superior on the PC, but within limitations, 
there's much that can be achieved in the MAC 
environment. 



EIGHT 

 

 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

When it takes longer to program than to do it 

manually.  
When I'm asked to consult on a project, it is foremost on 
my mind, how long it is all going to take to provide the 
client with an end deliverable that is bug-free, user-
friendly, efficient, quick, does what the client intended 
and is extensible. And this is the same advice I'm going to 
pass on to you. You might find that you need something 
done that clearly should be automated. So as you start 
going through the motions, you figure why not turn on the 
macro recorder and I can then do the same thing for the 
rows below. But then you realize that you have to go into 
the code and change the cell reference of the starting cell 
and then subsequent cells and lo and behold what should 
have taken you 5 minutes has taken about 15 minutes of 
fiddling about with the code. This idea can be extended to 
something that could have taken 1 hour but because of the 
programming and debugging has now taken around 3 
hours.  
 
So my advice is this: Programming is a very exact 
discipline. The computer will do what you ask it to do. 
And EXACTLY what you ask it to do. It won't do more 
and it won't do less. Whether you have miscalculated what 
you asked of it is irrelevant to the computer. It won't intuit 
for you. There's a certain amount of debugging that goes 
with every bit of code that you either record or write from 
scratch, if you're going to reuse that code. And apart from 
the writing of the code, much of your time will be spent 
debugging. So, 

 
                 IF you're going to use your code again and 
again - That is when you should consider getting a macro 
to do the job for you. 
                 IF you are going to do a job that you foresee 
taking hours or days by a human, that is again when you 
should consider a macro for the task. 

 
Those are the only times you should consider writing a 
macro or getting someone else to write one. 

Only 2 reasons to 
consider writing 
macros: 

 

 IF you're going to use your 
code again and again... 

IF you're going to do a job 
that you foresee taking 
hours or days by a human... 

Would you like to discuss your 
excel requirements? 

http://www.excel-lentsolutions.com/free_consultation.html


 

Nine 

Farming out your automation requirements and what to expect.   

I'm often asked the question: How long will it take? And after what I've just said, you know where 
I'm going with this. The whole process takes a very detailed understanding. My clients know that 
I'm going to give them a button or a menu that will do magic, that once they click on, will do all 
the tasks for them in the blink of an eye. But that comes at a cost.  

                a) I need to spend time to understand what it does already and what needs to be added or 
automated, if it already exists. If I'm building something from scratch, then I need to get an 
understanding of what needs to happen. 

                b) I then need to translate that understanding into an e-mail or letter of agreement, so to 
be sure that my understanding of what needs to happen (in my words) does not conflict with the 
clients' understanding of what needs to happen. 

                c) If the understanding is correct, I then need to create a road map of what processes 
need to take place and in which order.  

Let me give you an example. Let's say you are asked to go and make a cup of coffee. For the 
human brain that is a fairly simple task. You can describe it in a sentence and the execution of 
that, although complex, for an able-bodied human it is a series of instructions from the brain that 
most humans can follow. 
Now, let's put that same task into a series of instructions. a) Get up, b)go to the kitchen, c)make a 
cup of coffee, d)Return with the coffee, e)Give it to the person who requested it. 

But that is a simplified list of instructions really, as you can break a) down in the following 
fashion. i)Lean forward, ii)Put your weight on both legs, iii)push until your legs straighten, and  

b) can be broken down:  iv) In the standing position, roll your chair back with the back of your 
legs, v)put your right leg to the right, vi)put your left leg to the right. vii)Once you've cleared your 
desk, put your right leg forward, viii)Put your left leg forward. REPEAT steps vii & viii until you 
reach the hallway, ix)Turn left into the kitchen. etc. 

And this could be broken down even further, because the brain is a marvellous piece of organic 
machinery. Now you have some idea as to what a programmer has to do. And if there's an obstacle 
on the way to the kitchen, did the programmer think of providing instructions to get around that, or 
will the person walk straight into that obstacle? This is what is known as a bug. Something 
unexpected that the programmer did not foresee. Sometimes it's because the programmer didn't 
know that a chair might be rolled out into the hallway and didn't plan for it. Sometimes it's 
because the requester didn't know at the time of providing the brief that there would ever be a 
chair in the halllway. 

In either case, the person getting the coffee will not reach the kitchen without instructions for 
circumventing the chair in the hallway. Of course I've provided an over-simplified example of what 
I do, but essentially my time is spent planning what needs to be done and planning what could go 
wrong and what to do in case it does, and that is what takes time. In general, I can provide a fairly 
good estimation of the time it will take, but each job is different and estimation is not an exact 
science by definition. I hope this has given you a pretty good idea of what to expect. In the long 
run, you have a piece of software written for you that is tailor-made, that is going to make your life 
easy for years to come and the long-term benefit of going the macro-route, far outweighs having 
you or your staff doing it manually both in terms of time and in terms of man-hour cost.  



 
Farzad Afkham is a Mathematician and Senior Excel VBA Developer. He is the Managing Director of Excel-
lentsolutions.com and has consulted at companies like Ernst & Young in the Financial Sector and the BBC in Media, as 
well as many other SMEs. He has written original algorithms for many businesses' models in a career spanning over 10 
years. 

 

TEN 

Cheaper versus Better.  

I was once told that there's a student who is willing to do what I do for a few pounds per hour less. 
And I explained that the student isn't doing what 'I' do. He's doing what 'he' does. And they are 
different! But essentially writing a programmed macro. So why not go for the student versus the 
experience of a professional? 

Well, hopefully the professional, if he has been in business for several years, has learned tricks, 
solutions, strategies etc. that the student just starting out hasn't. The professional, was once that 
student and had to discover certain things, had to research certain solutions, had to seek help, had to 
make mistakes and learn from them. 

What does that mean to the buyer? 

Well if the student charges half of what the professional charges per hour and it takes him twice as 
long as the professional, what is the net price to the buyer? 

The difference is that the buyer has waited twice as long for the product and paid the same amount. 

But the difference doesn't just end there. The professional's code will stand up to the chairs in the 
hallway because his experience tells him there are likely to be chairs in the hallway. The student 
won't know that and after waiting twice as long the buyer will be calling the student to say the 
program is falling over! 

Beware of those who offer programming services for low 'flat' rates. We've all been enticed by 
those low bids that seem too good to be true. They do this to win the job and then when they run 
into trouble, they know they won't be earning more for the extra 20 hours they are spending on the 
work, and soon their motivation begins to fade and what happens to the buyer?  

The buyer waits and waits...and waits. Sometimes the buyer ends up hiring the professional to either 
complete the job or to start the job from scratch! So don't put yourself or your business through 
that! A good programmer will prove invaluable. They might even reuse code they've already written 
for someone else to save hours on the job and save you ££££s. 

The moral of this story? Hire a professional. To get what you expected reliably, in a timely fashion, 
for a product that has longevity, for customer service that attends to your concerns and for your 
peace of mind.  

Would you like to discuss your 
excel requirements? 

http://www.excel-lentsolutions.com/free_consultation.html


Here's what some of our clients have said about us: 

"When a client needed some sophisticated Excel programmes written I knew Farzad was the 
man to help us.  
 
The routines Farzad created were both effective and efficient, saving the owner of the 
business the best part of a day every month, as well as allowing us to very quickly create a 
database of all the related transactions for the previous 9 months (a massive task if we'd tried 
to do it manually).  
 
I would highly recommend Farzad's skills to anyone who does time-consuming tasks through 
spread-sheets - I know he will automate them to take a fraction of the time it currently takes 
you now, and probably more accurately too!" 

- Stuart Kerslake, On behalf of Interpost 

  

  

"We contracted Farzad to update our risk management tool and he did an excellent job for 
us. He came in to our business, rapidly understood our needs, delivered what he said he 
could deliver in less time than we had anticipated. We won't be looking any further afield for 
future updates." 

- Philippa Klein, Head of Business, BBC Factual Production  

  

  

"Farzad has been instrumental in significantly adding value to our data products by 
increasing our security as well as allowing us to market our data flexibly and simply to 
demanding clients. he is truly an expert in Excel and would add value and save costs in any 
process that requires repetition."  
Service Category: Business Consultant 
Year first hired: 2010 (hired more than once) 
Top Qualities: Great Results, Expert, High Integrity" 

- Simon Bliss, CEO of Principal People and Market My Business  

 


